
Chapter 4  

Magnetic Structure 

 

INTRODUCTION 

 

 In this final chapter on the subject of structures, we turn attention to magnetic 

materials.  Why?  Because magnetic materials are illustrative of yet another level of 

structure that often arises in condensed matter beyond that of particle arrangements.  As 

we will see, magnetic particles have a property of net spin and a magnetic moment whose 

orientation in space is largely unrestricted.  Regardless of whether a large system of 

magnetic particles are positioned in an ordered or disordered manner, their spins 

represent an additional layer of ordering.  The moments could be randomly oriented or 

aligned in a common direction.  In ferromagnetic systems, these moments interact with 

one another to promote a local alignment of the moments that can eventually spread over 

the entire system.  This is reminiscent of how pair-wise bonding between particles 

eventually leads to crystallization of a liquid and is the archetype for a wide variety of 

phase transitions in which order appears in the form correlated regions emerging from a 

disordered host. 



THE ORDERING PROCESS 

 

 So far, our discussion of structure has focused entirely on particles: their relative 

positions and the forces that hold them together.  We have seen that arrangements of 

particles fall into either an ordered or disordered pattern which can be characterized by 

the level of symmetry present.   By virtue of its disorder, the liquid has rotational 

invariance and an infinite symmetry (on average).  The crystal, however, conforms to a 

space lattice and possesses only a discrete set of symmetry operations.  In the process of 

forming a crystal from the liquid, the symmetry is often said to be "broken". 

 

{Insert Figure 4-1} 

 

 In addition to symmetry breaking, the transition from a liquid to crystal also 

induces a corresponding sharpening of the features found in the pair distribution 

function, g(r).  Again, this distribution function is a measure of the conditional 

probability that, given a particle is at the origin, another will be found a distance r away.  

In progressing from a gas to a liquid to a crystal as illustrated in Fig. 4-1, particle 

positions become increasingly correlated and the corresponding g(r) evolves  

progressively sharper and distinct features due to the ever increasing precision in locating 

particle positions.  

 

Correlations and Pattern Formation 

 Both symmetry breaking and correlation building are common elements in most 

all phase transitions and are nicely illustrated in the orientational ordering that occurs in 



magnetic spin systems.  But before we begin looking at magnetic materials, let us 

consider an example that may help to clarify how orientational structure discussed in this 

chapter is similar to, but also different from that discussed in previous chapters.  Imagine 

a large country uniformly populated by people that are identical in every respect except 

for one property: their mood.  For simplicity, we limit the possible moods to just that of 

either happy or sad.  If these people go about their daily lives without interacting with 

one another, their individual mood would be a random result.   There would be no bias 

for a person to be either happy or sad, and as illustrated in Fig. 4-2a, the country as a 

whole would appear uniformly complacent, with neither a balance of happy nor sad. 

 

{Insert Figure 4-2} 

 

 But suppose that people do interact and can influence each other's mood.  

Experience suggests that a person surrounded by happy people tends to be happy while a 

person surrounded by sad people tends to be sad.  Interactions with neighbors serve to 

bias a person's mood.  With this biasing mechanism we might then expect to find patterns 

emerging within the society like those illustrated in Fig. 4-2b where small enclaves or 

communities of people develop with a common mood.  Furthermore, we would expect to 

see these communities grow over time due to an inherent 'feedback' built into the biasing.  

The larger a community becomes, the more strongly it biases those potential converts on 

the periphery.   This spontaneous growth would result in regions of correlated mood that 

coarsen and eventually merge into one another as illustrated in Fig. 4-2c. 

 But how do we characterize this growing pattern of correlated regions.  A simple 

average of the property over the entire system would not necessarily reveal the 



developing correlations taking place.  As we saw in our example above, correlated 

regions may be substantial in size but could still be divided into nearly equal numbers of 

happy and sad communities. To illuminate the presence of these correlated patterns, we 

need to consider an appropriate correlation function of the form 

   

! 

CX (
! r 1,
! r 2) = X(! r 1)X(

! r 2) ,      (4.1) 

where   

! 

X(! r )  represents the value of the property for a particle located at   

! 

! r  and the 

brackets again signify the required ensemble averaging.  Conceptually, this correlation 

function is much like the pair distribution function discussed in Chapter 2.  It expresses a 

conditional probability that given some central particle at   

! 

! r 1 has a certain value of the 

property X, another particle at   

! 

! r 2 will have the same value.  In practice, the correlation 

function would be computed by selecting each particle in the system, in turn, as the 

central particle and sampling the similarity of those neighbors a distance   

! 

"
! r = ! r 2 #

! r 1  

away.  Over distances shorter than a characteristic length, 

! 

", known as the correlation 

length, the property is similar and said to be correlated.  At longer separation distances, 

the similarity vanishes and the property becomes uncorrelated. 

 Although our example involves people with mood swings, we could readily 

replace it with particles, each of which has some property whose value can match or 

differ from that of its neighbor.  Magnetic particles with their intrinsic magnetic moment 

are one example.  

 

MAGNETIC MATERIALS 

 



 When we speak of magnetic materials, we most often we think of materials like 

iron that can be either magnetized or de-magnetized by an external field and retain the 

final state of magnetization when the field is removed.  Iron is a ferromagnetic material 

and, on a microscopic level, each atom of iron contains a miniature magnetic moment (a 

particle property) whose individual orientation is influenced not only by the external field 

that is applied, but is also biased by the orientation of its neighbors.  Materials that 

possess a miniature moment, but which lack the neighboring interaction, are known as 

paramagnets.  Although the moments of a paramagnet can be aligned with an applied 

field, paramagnets are unable to retain their magnetization when the field is removed.   

 In turn, we will look at both of these magnetic materials as well as consider the 

diamagnetic response seen mainly in non-magnetic materials that do not possess a 

permanent moment.  We begin by inquiring into the origin of the miniature magnetic 

moment that endows magnetic materials with magnetization. 

 

Magnetic Moments 

 To understand the origin of the magnetic moment of an atom, consider for a 

moment the simplistic Bohr model illustrated in Fig. 4-3 in which an electron orbits the 

nucleus with speed 

! 

"  on a circular path of radius 

! 

" .   

 

{Insert Figure 4-3} 

 

The steady motion of the orbiting electron constitutes a continuously flowing loop of 

current, 



 

! 

I =
charge
period

= "e /(2#$ /%) = "e% /2#$ ,     (4.2) 

which together with the area of the loop produces a magnetic moment, 

 

! 

µorb = IA = ("e# /2$%)$%2 = "e#% /2 .     (4.3) 

Meanwhile, the orbiting mass of the electron produces an angular momentum,

! 

L = m"# , 

directed opposite the magnetic moment.  Combining this with Eq. (4.3), we find that 

   

! 

! 
µ orb = " e /2m( )

! 
L ,       (4.4) 

and conclude that the magnetic moment ultimately arises from the angular momentum of 

the electron.  This conclusion is unchanged by a quantum mechanical approach, and since 

quantum mechanics requires the angular momentum be quantized in discrete units of   

! 

!, 

the orbital magnetic moment must appear in discrete units of a Bohr magneton, 

  

! 

µB = e! /2m = 9.27 x 10-24  Am2 . 

 In addition to the orbital angular momentum, there is also electron spin that 

contributes to the overall angular momentum of an atom.  For the electron, spin is 

quantized and the quantum number can assume either s = ± 1
2

.  Without going into the 

detailed quantum mechanical treatment, the electron spin of a free electron is found to 

contribute to the magnetic moment by an amount, 

 !
µspin = !g e / 2m( )

!
S ,        (4.5) 

where the so-called splitting factor, g = 2.0023. 

 For completeness, we should also acknowledge that their is yet another 

contribution to the magnetic moment that arises from the intrinsic spin of the nucleus.  

Again, the nuclear magnetic moment appears in quantized units, but of a smaller size, 



  

! 

µn = e! /2mp = 5.05 x 10-27  Am2 , known as a nuclear magneton.  Although this nuclear 

magnetic moment plays an important role in nuclear magnetic resonance (NMR), in 

magnetic materials it is completely masked by the much larger magnetic moment arising 

from the electron. 

 We now see that the magnetic moment has its origin in the combined orbital and 

spin angular momentum of the electron and we begin to get a glimpse as to why not all 

materials are magnetic.  Consider any of the noble gas elements that form closed electron 

shells.  Since each shell is filled, the total orbital angular momentum vanishes.  Likewise, 

since each electron is paired to another with opposite spin (due to Pauli exclusion), the 

net spin angular momentum is also zero.  Consequently, the noble gas elements have no 

net angular momentum and no permanent magnetic moment.  They are non-magnetic.  A 

similar fate is found for many elements of the periodic table in which electrons appear in 

pairs so that the vector sum of the angular momentum vanishes.  Magnetic materials then 

develop only in those fortuitous instances when an outer electron shell is only partly 

filled and contains an odd number of electrons. 

 Determining the magnetic moment of an atom thus boils down to determining the 

total angular momentum of its constituent electrons and presents a complicated vector 

addition problem that is further compounded by rules of quantization.  Luckily, this 

vector addition problem has already been tackled and is commonly treated using the 

Russell-Saunder's scheme of spin-orbit coupling which can be found in most any 

introductory quantum mechanics textbook.  In this scheme, the atom's total orbital 

angular momentum, 
!
Latom =

!
Li

i
! , and total spin angular momentum, 

!
Satom =

!
Si

i
! , are 

combined to obtain a total angular momentum, 



 
!
J =
!
Latom +

!
Satom .       (4.6) 

The magnetic moments would be similarly added 

 !
µatom =

!
µorb
atom +

!
µspin
atom ! " e / 2m( )

!
Latom + 2

!
Satom( ) ,   (4.6b) 

producing a moment that is not aligned with 
!
J .  It is common to introduce an effective 

magnetic moment of the atom that is proportional to the total angular momentum and 

given by 

 !
µatom = ! "g e / 2m( )

!
J ,       (4.7) 

where (on can show Ex*) the splitting factor is now replaced by 

 !g =1+ j( j +1)+ s(s+1)" l(l +1)
2 j( j +1)

.     (4.8) 

 

Diamagnetisism 

 We are keenly interested in those magnetic materials fortuitous enough to have a 

non-zero angular momentum.  But, let us pause momentarily to consider how the 

remaining non-magnetic materials respond to an applied field.  Although they lack a 

permanent moment, these non-magnetic materials do develop a weak magnetization that 

is opposite to the direction of the field.  That is, they exhibit diamagnetic behavior as 

opposed to a paramagnetic response.   

 To understand the origin of the diamagnetic response, consider again the example 

of the single electron atom illustrated in Fig. 4-3.  Suppose we apply a magnetic field, 

  

! 

! 
B = µo

! 
H , directed upward, perpendicular to the orbital plane.  This new field introduces 

an upward magnetic flux through the loop which, by virtue of Lenz' law (the one 

expressing Nature's displeasure with changing flux), causes the electron to react in such a 



way as to produce a counter flux.  Assuming that the orbital radius is fixed, a quick check 

of our right hand rule reveals that the needed counter flux is achieved by having the 

electron speed up (or slow down, if the electron were orbiting in the opposite direction).  

One can show (Ex. 2) that the electron suffers a change in its angular velocity by an 

amount, 

 

! 

"# = eB /2m ,        (4.9) 

known as the Larmor frequency.  This speed change is common to all electrons in the 

orbital and, for an atom with Z electrons, the applied magnetic field thus induces a net 

change in the current by an amount, 

 

! 

Iinduced = "Ze #$ /2%( ) = "Ze2B /4%m .    (4.10) 

This current change in turn induces an average magnetic moment, 

 

! 

µinduced = " Ze2B /4m( ) #2       (4.11) 

directed opposite the applied magnetic field.  Collectively, this produces a net 

magnetization per unit volume of  

   

! 

! 
M = n

! 
µ .        (4.12) 

where n is the particle number density.  Because diamagnetic materials respond to an 

applied field by producing an induced magnetic moment proportional to the field but 

opposite in direction, the magnetic susceptibility of a diamagnet, 

 

! 

"m =
dM
dH

= nµo

µinduced

B
= # Ze2nµo /4m( ) $2 ,   (4.13) 

is always less than zero.  While the diamagnetic response is only measureable in non-

magnetic materials, it is nevertheless found universally in all materials including those 

magnetic materials that have a permanent magnetic moment due to a net angular 



momentum.  The size of the induced moment is however much smaller than that of the 

permanent moments and in magnetic materials the diamagnetic contribution is masked by 

the paramagnetic response.  Values for the susceptibility for a handful of common 

elements are listed in Table 4-1. 

 

Table 4-1 Susceptibility of several elements at standard temperature and pressure (values 

obtained from Handbook of Chemistry and Physics (1983)). 

Diamagnetic Paramagnetic 

Element Susceptibility Element Susceptibility 

Bismuth -1.6 x 10-4 Sodium 8.5 x 10-6 

Gold -3.4 x 10-5 Aluminum 2.1 x 10-5 

Silver -2.4 x 10-5 Tungsten 7.8 x 10-5 

Copper -9.7 x 10-6 Platinum 2.8 x 10-4 

Hydrogen -2.2 x 10-9 Gadolinium 4.8 x 10-1 

 

 

Paramagnetism 

 As we learned earlier, magnetic materials are those whose constituent atoms 

possess a net, non-zero, magnetic moment in the absence of any applied magnetic field.  

Such materials are generally referred to as paramagnetic because the effect of an applied 

field produces a torque that tends to align moments in the direction of the field with a 

corresponding lowering of internal energy given by, 

   

! 

U = "
! 
µ #
! 
B .        (4.14) 



In difference to ferromagnetic materials, which we will discuss in the next section, this 

alignment of moments with the field disintegrates at any finite temperature when the field 

is removed due to incessant thermal agitation.  Consequently, the magnetization 

vanishes as the moments return to a disordered pattern of random orientations. 

 Let us consider then a paramagnetic material with total angular momentum 

quantum number j.  How does the magnetization of this material depend on both the 

applied field (acting to align the moments) and the temperature (acting to randomize the 

orientations)?  The answer to this question requires a thermodynamic approach.  Imagine 

as illustrated in Fig. 4-4 that the field is applied along the z-axis.  Because angular 

momentum is quantized, its component along the z-direction is also restricted to values 

Jz =mj! , where the magnetic quantum number, mj, ranges from mj = j, (j -1), ..., 0, ... -( j 

-1), - j.  From Eq. (4.7), this then implies that the component of   

! 

! 
µ i  along the field is 

similarly quantized asµz = ! "gµBmj . 

 

{Insert Figure 4-4} use lower case j's 

  

 Since we also anticipate no net magnetization to appear in either the x- or y-

directions, the magnetization we seek is given by Eq. (4.12) using only the average value 

of 

! 

µz  consistent with conditions of thermodynamic equilibrium.  Using Boltzmann 

statistics, this average can be expressed as 

 µz =

! "gµBmj( )e!Uj /kBT

! j

j

#

e!Uj /kBT

! j

j

#
,      (4.15) 



where  

 Uj = !µzB = !(! "gµBmj )B =mj ( "gµBB) .    (4.16)   

One can show (Ex. 5) that this relation reduces to  

 µz = !gµB j( )Bj (y) ,       (4.17) 

where y = !gµB jB / kBT , and  

 Bj (y) =
2 j +1
2 j

!

"
#

$

%
&coth

(2 j +1)y
2 j

'

(
)

*

+
,-

1
2 j
!

"
#

$

%
&coth

y
2 j
!

"
#

$

%
&

.
/
0

1
2
3

,   (4.18) 

is known as the Brilloun function.   

 

{Insert Figure 4-5} 

 

 Good agreement of Eq. (4.17) with experiment is demonstrated in Fig. 4-5 for 

several materials of differing j.  In all instances, the magnetization increases with 

increasing field reaching a point of saturation in which all the moments are aligned with 

the field.  In the weak field regime, the magnetization is roughly proportional to the 

applied field.  Here, we can approximate the Brillouin function for small argument as  

 lim
y<<1

Bj (y) =
y( j +1)
3 j

,       (4.19) 

and obtain the susceptibility as 

 !m =
dM
dH

= nµo
!g 2µB

2 j( j +1)
3kBT

=
C
T

,     (4.20) 

a result known as the Curie law.   

 An example of paramagnets exhibiting Curie behavior are shown in Fig. 4-6.  In 

paramagnets, there is no interaction between neighboring moments and the ability to 



align moments using an external applied field is countered only by the thermal agitation 

present at finite temperatures.  When this thermal agitation vanishes at absolute zero, the 

alignment of magnetic moments then occurs without competition and, as the diverging 

susceptibility suggests, any tiny field will be capable of aligning all the moments. 

 

{Insert Figure 4-6} 

 

Ferromagnetism 

 Unlike paramagnets, ferromagnets are able to retain their magnetization when the 

external field is removed.  In actuality, this is only true if they are held at a temperature 

below the so-called Curie temperature, Tc.  Above the Curie temperature, the material 

responds like a usual paramagnet and the magnetization vanishes when the field is 

removed. 

 To interpret the ferromagnetic behavior it is somewhat natural to suppose that 

there exists in these materials some internal interaction between magnetic moments that 

biases neighboring moments to adopt a common orientation.  Indeed, early theories of the 

ferromagnetic state advanced by Pierre Weiss fashioned this interaction in the form of an 

internal magnetic field, self-generated by the net alignment of moments and thus 

proportional to the net magnetization, 

   

! 

! 
H int = "

! 
M or

! 
B int = µo"

! 
M .      (4.21) 

This so-called molecular field was seen as being both a result of the aligned moments and 

yet also a stimulus for additional alignment.   Inherent in this dual nature is a sort of 



feedback mechanism that can promote the rapid growth of regions of correlated magnetic 

moment below the Curie temperature. 

 Since the molecular field is proportional to the magnetization, the magnetization 

can then be expressed as a modified form of the Curie law, 

 

! 

M = C /T( ) H +H int( ) = C /T( ) H + "M( ) ,    (4.22) 

where the molecular field is merely adding to that which is applied externally.   Evident 

in this modified expression is the feedback alluded to earlier: the applied field promotes 

an incipient magnetization which in turn increases the effective field to promote even 

more magnetization.  We can rearrange Eq. (4.22) to obtain 

 

! 

M =
C

T "C#( )
H ,       (4.23) 

and obtain the susceptibility as 

 

! 

"m =
C

T #Tc( )
,        (4.24) 

where 

! 

Tc = C"  is identified with the Curie temperature. This temperature variation for 

ferromagnetic materials is known as the Curie-Weiss law and is illustrated in Fig. 4-7.  In 

difference to a paramagnetic material whose susceptibility diverges only at absolute zero, 

the susceptibility of a system of interacting magnetic moments diverges at the finite Curie 

temperature.  It is at this temperature where the molecular field, acting to align moments, 

achieves dominion over the thermal agitation working to disorder the moments.   

 

{Insert Figure 4-7} 

 

Exchange Interaction 



 Prior to the development of quantum mechanics, the only field known to exist 

within a magnetized specimen was a dipolar field collectively produced by the aligned 

magnetic moments themselves.  At the location of each moment, this dipolar field has a 

magnitude given roughly as 

 

! 

Bdip "
µo

4#
2 µ
a3

$ 

% 
& 

' 

( 
) ,       (4.25) 

where a is the spacing between particles.  Unfortunately, this dipolar field is too weak to 

account for most ferromagnetic materials, including iron whose Curie temperature ranges 

near 1000 K.  Combining Eq. (4.20) and Eq. (4.25), we can express the Curie temperature 

for the case of a dipolar field as 

 Tc =C! ! µo
"g 2µB

2 j( j +1)
3kB

#

$
%

&

'
(

1
2"a3
)

*
+

,

-
. .     (4.26) 

For iron (see Ex. 3) this yields only about 3 K, which is some two and a half orders of 

magnitude smaller than the experimental result.  

 The resolution to this problem came eventually from quantum mechanics.  In a 

fashion analogous to our discussion of the covalent bond in Chapter 3, a quantum 

mechanical treatment of the overlaping wavefunction of two neighboring atoms produces 

an addition contribution to the potential energy of the form 

   

! 

u(rij ) = "2Jex (rij )
! 
S i #
! 
S j ,      (4.27) 

where   

! 

! 
S i and   

! 

! 
S j  are the respective spins of the two atoms.  This interaction is known as 

the exchange interaction, and the energy parameter Jex, whose dependence on the atom 

separation is illustrated in Fig. 4-8, is often referred to as the exchange integral.  As seen 

in the figure, for a range of intermediate atomic separations, the exchange integral is 

positive and results in a lowering of internal energy if the two neighboring spins are 



aligned.  This is the source of the mysterious biasing of moments that stabilizes the 

magnetization in a ferromagnetic material.  Although the source is not really a molecular 

field but rather a pairwise interaction between adjacent spins, it is nevertheless 

convenient to treat the interaction as if it were the result of mean field as described by Eq. 

(4.21).  

 

{Insert Figure 4-8} 

 

Correlated Domains 

 Now that we understand the origins of ferromagnetic behavior, we can finally 

return to our original theme concerning orientational pattern formation in magnetic 

materials by considering what happens when we cool a ferromagnet toward its Tc in the 

absence of any field.  Far above Tc, the moments are orientated randomly because the 

thermal energy far exceeds that of the exchange interaction and serves to thwart its 

biasing effect.   As we cool, we would expect to find small communities of similar spin 

orientation developing, as illustrated in Fig. 4-9.   

 

{Insert Figure 4-9} 

 

The specific orientation of a region is random and reflects only that orientation which 

happened to be dominant when the region first began to form.  To characterize this 

developing pattern, we would naturally introduce a correlation function, the moment-

moment correlation function 

   

! 

"(! r ) =
! 
µ (0)# ! µ (! r ) ,       (4.27) 



which would be zero at very high temperatures (reflecting the random orientations) but 

would develop a finite, non-zero value over a extent characterized by a correlation length 

! 

" >> a  at lower temperatures.  Arriving at Tc, we would observe the correlation span over 

great distances, comparable to the size of the system itself.  The correlated regions would 

develop into so-called domains with a common orientation of the magnetic moment. 

 

Hysteresis Loop 

 What happens if we now apply an external field to this zero-field cooled 

specimen?  Our magnetization would follow a path illustrated in the Fig. 4-10, known as 

a hysteresis loop.  Our specimen starts off in an unmagnetized state.  Although there exist 

large domains of uniformly magnetized regions, these domains are individually oriented 

in random directions resulting in little or no initial magnetization.  As we apply a field, 

those domains with orientation in the field direction begin to grow at the expense of other 

domains.  These favored domains expand their boundaries by converting spins near the 

periphery of the domain.  Consequently, the ill-favored domains shrink away.  At some 

very large applied field, the favored domains have grown to macroscopic proportions and 

the magnetization saturates.  As the field is then removed, the new domain structure 

adjusts slightly but the favored domains remain dominant due to the internal biasing 

provided by the exchange interaction.  When the field is completely removed, the finite 

magnetization that remains is known as the remanence, MR. 

 

{Insert Figure 4-10} 

 



 In order to de-magnetize the specimen, a reverse field must be applied.  In 

applying this reverse field, the dominant domains are now shrunken while domains of 

opposite orientation (those aligned with the reversed field) begin to grow.  Eventually, a 

situation is reached at a field of magnitude Hc known as the coercive field (or coercivity) 

where the net magnetization vanishes.  Further increase of the reverse field beyond Hc 

drives the system again to a state of saturation. 

 

SUMMARY 

• Magnetic behavior appears in atoms with a net total (orbital plus spin) angular 

momentum, 
!
J . 

• The permanent magnetic moment of an atom is proportional to J and appears in 

units of a Bohr magneton, µB = e! / 2m . 

• All materials exhibit a diamagnetic response.  For non-magnetic materials, the 

response is observed as a weak magnetization opposite the applied field. 

• Paramagnets lack any interaction between neighboring moments and lose their 

magnetization whenever a field is removed.  Ferromagnets experience an 

interaction between neighboring moments and can retain their magnetization if 

the field is removed at temperatures below the Curie temperature, Tc. 

• The interaction between moments in a ferromagnet arises from a quantum 

mechanical interaction between neighboring atomic spins,   

! 

u(rij ) = "2Jex (rij )
! 
S i #
! 
S j , 

known as the exchange interaction. 

• Near Tc, ferromagnets develop regions of correlated moments which increase in 

size as Tc is approached. 



 

EXERCISES 

4-1.  A power transformer consists of two windings around a common ferromagnetic 

core and is used in ac circuits to step up (or down) an ac voltage.  During each cycle, the 

ferromagnetic core repeats the process of growing and shrinking domains.  (a) Show that 

the work done in one cycle of a hysteresis loop equals the area enclosed by the loop.  (b) 

Which would be better for a power transformer: a core with a large coercivity or a small 

coercivity?  Why?  (Hint: you might make use of the following thermodynamic relation: 

dW = HdM) 

 

4-2. Consider the centripetal force on the orbiting electron of the classical Bohr model 

illustrated in Fig. 2.  Consider both a situation with and without a magnetic field present 

and show that when the field is present and directed upward (perpendicular to the orbital 

plane), the electron speeds up by 

! 

"# $ %eB /2m  and that the change in its angular 

velocity then equals the Larmor frequency given in Eq. (4.9).  As a follow up to this, 

determine how large of magnetic field is needed to cause the 1% change in the orbital 

speed. 

 

4-3. In the text, the Tc for iron was estimated to be only about 3 K based on a classical 

molecular field due to the dipolar interaction.  Verify this by direct substitution into Eq. 

(4.26) using for iron the angular momentum j = s = 1 and a particle spacing a = 1 Å. 

 



4-4. Compute the diamagnetic susceptibility for a gas of hydrogen atoms (at standard 

temperature and pressure).  Recall that the ground state wave function for a hydrogen 

atom is 

! 

"(r) = #a3( )$1/ 2e$r / a , where   

! 

a = !2 /me2 = 0.529 Å .  Note also that 

! 

"2 = x 2 + y 2 =
2
3
r2  for a spherically symmetric orbital.  Compare your result with 

the experimental value listed in Table 4-1. 

 

4-5.  Obtain the form of the Brillouin function given in Eq. (4.18) starting from Eq. 

(4.15).  As way of hint, notice that: 

! 

memx"
emx"

=
d
dx

ln emx"( ){ }. 

 

4-6. Consider the simple two state paramagnet with j = s = 1/2.  Show that for such a 

paramagnet, the magnetization is given simply as: 

! 

M = nµB tanh(µBB /kBT).  Using this 

result, determine the magnitude of magnetic field required to produce a magnetization of 

half its saturation value at (a) 300 K and (b) 1 K. 

 

4.7.  Draw an arbitrary 
!
Latom +

!
Satom  vector combination that results in 

!
J .  On this same 

drawing include also the magnetic moment addition indicated by Eq. 4.6b that would 

accompany your vector choices.   Given that 
!
Latom = l l +1( )"  and 

!
Satom = s s+1( )" , 

show that the projection of !µatom onto the 
!
J  direction, 

!
µatom !

!
J

!
J

, equals the result given in 

Eq. 4.7 with the splitting factor of Eq. 4.8. 

 



 

 

Suggested Reading: 

Chaikin and Lubensky provide additional depth on the subject of correlations, but at an 

advanced level that might not appeal to all.  For a good introduction to magnetic 

materials I recommend reading the sixth chapter of Griffiths.    

Chaikin and Lubensky provide additional depth on the subject of correlations, but at a 

higher level that might not appeal to all. 

D. J. Griffiths, Introduction to Electrodynamics, 3rd Ed. (Prentice Hall, New Jersey, 

1999). 

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge 

University Press, New York, 2003). 

C. Kittel, Introduction to Solid State Physics, 8th Ed. (John Wiley and Sons, 2005). 


