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Physics 531: Quantum Mechanics Fall 2013

Project #1: Quantum Mechanical Tunneling and Alpha Decay

To set the stage for this project, please make sure youve watched and worked through the
powerpoint lecture on Blueline (in the modules section under Project #1) titled Spectroscopy,
the Atom, and Early Nuclear Physics.

One of the first mysteries of quantum mechanics was the quantization of energy, which man-
ifested itself as discrete absorption and emission lines from molecules and atoms. Although
we have not yet tackled the hydrogen atom, we saw (or you will see) how energy quantization
arises in the infinite and finite wells: boundary conditions force particles to behave as stand-
ing waves leading to fixed modes and quantized energies. Your project is to take what we
have learned in solving the 1D Schrodinger Equation and to apply it to quantum tunneling,
the strange phenomenon in quantum mechanics where particles can “tunnel” through poten-
tial barriers even though they do not have sufficient energy classically. Quantum tunneling
is an amazingly important physical phenomenon. In fact, much of our modern technology
like flash drives and Josephson Junctions depend on quantum tunneling for their operation.
The Scanning Tunneling Microscope (STM) which has allowed physicists to discern and ma-
nipulate individual atoms on surfaces operates because of quantum tunneling. And it turns
out quantum mechanical tunneling is even important in stellar fusion and in how the smell
receptors in our noses function. This project will help you learn about quantum tunneling
in an important application in nuclear physics: the alpha decay of uranium.

Project in a Nutshell: In this project you will solve a great puzzle of the late 1920s in
nuclear physics: the alpha decay of Uranium. The puzzle is essentially the following: the
how can alpha particles created in the interior of a nucleus escape despite having insufficient
energy to surmount the Coulomb barrier of the nucleus? The answer is quantum mechanical
tunneling, and you will perform the calculations that demonstrate the validity of this sup-
position. Furthermore, you will use your calculations to determine the half-lives of Uranium
and selected other even-even nuclei such as Polonium, Bismuth, Thorium, and Radium given
the energies of their emitted alpha particles.



0 Project Report

Each team will submit a detailed, professional quality, literature style report of your appli-
cation of quantum mechanics to alpha decay. This report will cover what you did, why you
did, what you learned, and will comment on how effective our model replicates experimental
results for this system.

• There is no page limit, but you should try to maintain clarity and succinctness in your
report (I would recommend about five single-spaced pages).

• Model your report after a paper in the professional physics literature: include a title,
list of authors, and a one-paragraph abstract that summarizes the aim, scope, results,
and conclusions of your project.

• You should use the LATEXtemplate on Blueline2 to format your paper in a two-column,
Phys. Rev. D. format.

• Include high quality figures, equations, and tables that support your analyses and
conclusions.

• Cite information sources as appropriate (you must include a bibliography). You will
never find a scientific paper in the literature without citations! Even the greats like
Feynman, Landau, and others cited others work.

• The intended target audience for your research papers is your fellow students in this
course. As you are an advanced, knowledgeable, and intelligent group, I expect a high
level of detail and mathematical sophistication in your projects; however, such detail
should be at a level at which your fellow classmates can understand the material.

• The handout “Guidelines for Scientific Writing” by Eric. D’hoker at UCLA should be
a useful resource - this is posted on Blueline2.

Your report will be assessed according to the following criteria. Additional details on these
competency assessments are provided in the Project Grading Rubric (available on Blueline2).

1. Qualitative analysis Are your arguments clear? Are you able to use physical data and
researched information to explain technical phenomena and support your conclusions?
Do you make appropriate connections among the various technical concepts and in-
formation, and between the technical and contextual information? Do you support
your data analyses and conclusions with quantum theory and nuclear physics? Do you
explain discrepancies? Do you make good use of estimation (if appropriate)?



2. Quantitative analysis Are your calculated data accurate? Do you make appropriate use
of published information and theory to support your data and quantitative analyses?
Do your quantitative results connect to and support your qualitative discussion? Do
you present your calculations in an organized and logical manner?

3. Communication Do you make effective use of written communication in the report?
Is your report well-organized, well-written, and appropriate for the audience? Are the
arguments and goals clear, and does the report support these arguments and goals?
Are the mechanics (spelling, grammar, word choice, punctuation) well-executed? Do
you make logical and well-supported arguments? Do you make good use of graphs and
images? Is reference information and evidence carefully woven into the text? Does
your report follow the model of a paper in the physics literature?

Detailed grading rubrics for the project report are posted on Blueline2. You are encouraged
to read these rubrics as you write up your project, and to communicate with the instructor if
there are areas of uncertainty. You will use these rubrics for your competency self-assessment.

In-class teaming reflections and a brief teaming survey will be used at the end of the project
to help maintain effective teams. The results from this survey will not affect your grade for
this first project; however, participation in the reflection and feedback process will affect
your grade. The reflections and surveys administered at the end of the project are simply
intended to spark conversations among teammates and help you recognize areas of strength
and areas potentially in need of further development. Individual team member contributions
and behaviors will be evaluated at the end of the project using the Comprehensive Assessment
of Team Member Effectiveness (CATME) survey.



1 General Background: Nuclear Physics at the Dawn

of the 20th Century - Stage 1

Well be tackling our projects in stages. Each stage will suggest questions to consider or
strategies to employ or calculations to perform that need to be completed before moving on
to the next stage. Some of this is scaffolding and will be reduced in future projects, and
some of it is very much a quality control issue. Since you are not sitting through lectures, I
very much need to determine that youve thought through and worked through the material
at the appropriate level. But most of all, the breaking of the project up into stages is meant
to help you - this is a very ambitious calculation we’re attempting, and setting you loose
on the project without some guidance wouldn’t result in the best learning experience. This
first stage sets up a bit of the background and history of this particular project, and all you
need to do is read this carefully.

1.1 Radioactivity

For a review of the history of the discover of radioactivity, I highly recommend that you read
the handout titled “The History of the Discovery of Radiation and Radioactivity” which I
have posted to Blueline2 in the Project #1 module folder. That said, let’s review a few key
details which will be relevant to this project.

Between 1899 and 1901 Rutherford along Paul Villard studied radioactivity and classified
radiation based on its penetration powers into three types: alpha, beta, and gamma, where
alpha is the least penetrating and gamma the most penetrating. At first, the identity of
the alpha, beta, and gamma radiation were unknown. However, in 1900 Becquerel, using
J.J. Thompson’s method of measuring the e/m ratio, showed that beta particles are in fact
electrons. In1907 Rutherford and Thomas Royds showed conclusively that alpha particles
were doubly-ionized Helium nuclei, and William Henry Bragged showed that gamma rays
were electromagnetic radiation (mainly due it’s non-deflection by a magnetic field - Ruther-
ford and Edward Andrade would later measure the wavelength of gamma rays). These three
types of radiation would prove powerful tools in investigating and understanding the world
of the atom.

1.2 Plum Pudding and the Atom

In the early part of the first decade of the 20th century, the dominant model of the atom
was that of J.J. Thompson: an atom is like a plum pudding in that the positive of the
atom is smeared throughout a mostly uniform spherical volume with electrons embedded
like raisins. However, the famous gold-foil experiment conducted by Geiger and Marsden in
1909 under the direction of Ernest Rutherford shattered this paradigm. While observing the
elastic scattering of alpha particles (helium nuclei) from radium bromide from a thin piece of
gold foil only several atoms thick they noticed that although most alpha particles were not



substantially deflected, some 1in 8000 were deflected by angles larger than 90◦. Rutherford
is reported to have said,

“It was quite the most incredible event that has ever happened to me in my life.
It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper
and it came back and hit you.”

From this observation Rutherford concluded that the plum-pudding model was quite incor-
rect, and rather that the majority of the mass of the atom and all of the positive charge
was concentrated in a small, compact object we now call the nucleus. From the frequency of
these large scattering events Rutherford was able to show that the nucleus must be smaller
than 10−14 m in radius.

1.3 The Mystery of Alpha Decay

Now that the structure of the atom was better understood, scientists turned to the question
of how α-particles were emitted from radioactive substances. Rutherford was said to be
especially bothered by this question. Here’s why. Rutherford assumed that potential in the
vicinity of a nucleus could be separated into two parts: i) a non-Coulombic part which was
attractive and responsible for holding the nucleus together and which operated in the interior
of the nucleus over distances < 10−14 m, and ii) an electrostatic-repulsion (Coulombic-part)
potential outside the interior of the nucleus. The two potentials should match up at r0,
the “rim” of the nucleus. Rutherford himself conducted scattering experiments in which he
sought to probe the Coulombic part of the potential. Using alpha particles from radioac-
tive Thorium C’ (which in modern notation is 218Po), he probed the Coulombic potential of
Uranium, and found that the Coulomb barrier was at least as high as 8.57 MeV. However,
the alpha particles that Uranium decay emitted (through he reaction 238U→ 234Th + 4He)
only had about 4.2 MeV of kinetic energy. Hence the puzzle. How were alpha particles
escaping from the interior of the Uranium nucleus when they had insufficient kinetic energy
to surmount the Coulomb barrier?

Many torturous theories were invented to try and explain this phenomenon. Rutherford
personally postulated that perhaps an alpha particle in the interior of the nucleus combined
with two electrons, became a neutral object, and hence could escape through the potential
wall. In the process the electrons were left behind. However, it is not hard to see the flaws
in this proposal: as one physicist put it, “this assumption appears to be quite unnatural and
hardly corresponds to the actual facts.”



It was at this point that George Gamow entered the story. Gamow, a Russian-Ukranian
physicist born Georgiy Antonovich Gamov in Odessa, was finishing his Ph.D. and had re-
cently moved to Gottingen to work on quantum theory. Unlike most of his contemporaries,
he shied away from crowded field of further developing quantum mechanics in the atomic and
molecular realm, and instead was searching for a new field to contribute to. He felt quantum
mechanics was already too mathematically sophisticated and crowded for his taste. Gamow
began searching through the literature for an interesting problem to work on. According
to his autobiography, Gamow happened across Rutherford’s 1927 paper “Structure of the
Radioactive Atom and the Origin of the α-Rays” in which Rutherford discussed the mystery
of alpha-decay. Gamow said, “before I closed the magazine I knew what actually happened
in this case ...”.

What was Gamow’s insight into the problem? Quantum tunneling. Gamow quoted from
the papers of Nordheim and Oppenheimer on wave mechanics: “In wave mechanics there
always exists a transition probability different from zero for a particle to get from one region
to another which is separated from the first one by an arbitrary, but finitely high, potential
barrier.” Gamow’s solution to the problem, was that the puzzle of alpha decay was not a
problem at all. The alpha particle did not need to have sufficient energy to overcome the
Coulombic barrier of the nucleus - it simply tunneled through it.



2 The Rectangular Barrier - Stage 2

Gamow began his calculation of the alpha decay of Uranium with a simplified model. He
looked at the quantum mechanical probability for an alpha particle of energy E to tunnel
through a square barrier of height U0 and width l.

Figure 1: Gamow’s sketch of α-particles of energy E incident from the right on a square
barrier of height U0 and width l. Gamow uses q instead of x, i.e. our wave function is ψ(q).

Steps/Tasks you should complete in this stage of the project:

1. Using your knowledge of solutions to the 1D Schrodinger Equation for potential wells,
write down the solution to the TISE for Regions I, II, and III. Make sure you include
both incoming and reflected particles in Region III but only transmitted particles in
Region I.

2. Apply the appropriate boundary conditions to your wave functions.

3. Using the machinery of 1D scattering find the exact transmission probability that the
alpha particle will tunnel through the barrier.

4. In the case where the barrier is both high and broad, show that the transmission
probability depends essentially on the exponential factor

T ∼ exp

−2

√
2m

h̄
(U0 − E)l





3 Refining the Model - Stage 3

The model we worked with in Stage 1 was of course not very realistic. One issue we need
to deal with is that probability (and hence particle number) is conserved in non-relativistic
quantum mechanics, whereas in particle decay conservation of particle number is of course
violated. Since we’re dealing with Uranium decay 238U→ 234Th + 4He, we need to learn to
deal with violations of probability conservation. In fact, Gamow’s refined model for alpha
decay does just this.

In Quantum Mechanics the continuity equation reads

∂P (x, t)

∂t
+

∂

∂x
j(x, t) = 0,

where P (x, t) is the probability (ψ∗ψ) and j(x, t) is the probability current given by

j(x, t) =
h̄

2mi

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)
.

The continuity equation is simply a statement of conservation of probability (the change in
probability is given by the flow of probability into or out of the region in question).

5. Derive the continuity equation for the Time Dependent Schrodinger Equation by mul-
tiplying the S.E. by ψ∗ from the left and the complex conjugate of the S.E. by ψ from
the right and subtracting the two. Identify P (x, t) and j(x, t) as defined above.

6. Suppose we add a complex term to our potential in the 1D Schodinger Equation, i..e

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2

∂x2
ψ(x, t) + (V1(x) + iV2(x))ψ(x, t).

Show that if the potential (or the energy) is complex that probability is not conserved.
Give an expression for the rate at which probability is lost or gained. Explain how we
might be able to use this effect to model alpha decay.

For a slightly more realistic model of alpha decay, Gamow next considered a double well
structure. His idea was to look for stationary solutions of the Schrodinger Equation which
represented a current of particles which were outgoing from a central region.



7. Can stationary solutions to the Schrodinger Equation represent a flow of particles out
from a central region? What does your earlier examination of the continuity equation
tell you?

Here’s a sketch of Gamow’s new model:

Figure 2: Gamow’s new model of two symmetrical rectangular potential barriers. The
barriers are separated by a distance 2q0 and each is a width l. The Roman numerals represent
the five different regions of the potential.

8. Show that if we want the solutions in the regions I q < −(q0 + l) and Region I′

q < −(q0 + l) to represent particles coming out from the central region, the wave
functions should be

ψ(q) = Aei(Et/h̄−qk
′+α) and ψ(q) = Aei(Et/h̄+qk′+α)

respectively where k′ =
√

2mE/h̄2. Explain why the constant α is the same for both
regions.

9. Show that our choice our wave functions in Regions I and I’ violate the continuity
equation, i.e. there is a net outflow of probability from the central well between the
two square barriers.

10. Write down solutions to the time independent Schrodinger Equation for Regions II,
II′, III, and III′.



11. What are the boundary conditions you must satisfy?

12. Determine constants in regions II, II′, III, and III′ in terms of A and α. Are you able
to fully satisfy the boundary conditions? Explain.



4 Complex Energy Solutions - Stage 4

Gamow realized that due to the large half-life of Uranium, the decay constant this implied
was small in comparison to nuclear energies. This in turns means that the current we found
as a result of writing the solutions in Regions I and I′ as outgoing plane waves is also small.
What this means is that the violation of the continuity equation is small and we can essen-
tially treat the alpha particle state inside the barrier (inside q < (q0 + l) and q > −(q0 + l))
as nearly stationary. To get everything to work out we finally make use of one of the chief
results you derived in Stage #2 - a complex energy (or potential) leads to a violation of the
continuity equation. Here we’ll try to find the decay constant by quantifying the amount of
violation of the continuity equation.

Therefore, we let

E = E0 + i
h̄λ

2
,

where λ is the decay constant (note that λh̄ has units of energy) and E0 is the usual alpha
particle energy.

12. Show that h̄λ is small compared to E0 by looking up the decay constant for 238U.

Because λh̄ is so small, we can keep the same solutions to the Schrodinger Equation as we
had earlier, but modify them simply by multiplying each solution by e−λt/2.

13. By starting with the continuity equation, i.e.

∂

∂t

∫ +(q0+l)

−(q0+l)
ψ?ψdq = −2

∂

∂q
jI(q),

show that we can can find an expression for λ by calculating

∂

∂t
e−λt

∫ +(q0+l)

−(q0+l)
ψ?ψdq = −2

A2h̄

2mi
2ik′e−λt

14. Using your calculations from Step #11, perform the integral above and show that λ
may be written as



λ =
8h̄k′ sin2 θ

m
[
1 +

(
k
k′

)2
]

2(l + q0)κ
· e−2l

√
2m(U0−E)/h̄2 ,

where κ is a constant of order one and sin θ =
[
1 + (k′/k)2

]1/2
.

Note that with our simple model we’ve derived an expression for how the decay constant of
Uranium should depend on the energy of the emitted alpha particle. However, this is still
highly dependent on the size of the potential well (q0 and l) as well as the height of the
potential barrier U0.



5 The WKB Approximation - Stage 5

Gamow next took advantage of the WKB Approximation (named for physicists Wentzel,
Kramers, and Brillouin) to find the transmission probability for alpha decay. The basic idea
of the WKB approximation is the following. The time independent Schrodinger Equation
can be written as

− h̄2

2m

d2ψ

dx2
+ V (x)ψ = Eψ.

This can be re-written as

d2ψ

dx2
= −p

2

h̄2ψ,

where p(x) =
√

2m(E − V (x)), which is the classical formula for the momentum of a particle

of energy E moving in a potential V (x). We can write the solution to the Scrodinger Equation
as

ψ(x) = A(x)eiφ(x),

where A(x) is a position dependent amplitude and φ(x) is a position dependent phase.

15. Show that when A(x) varies slowly (so that A′′(x), i.e. the second derivative of A is
negligible) that ψ(x) can be written as

ψ(x) ' C√
p(x)

e±i/h̄
∫
p(x)dx,

where C is a constant.

16. Now why are we looking at the WKB Approximation? Well, it turns out to be extraor-
dinarily useful for tunneling when the barrier is high and/or wide (and our E < V ).
Let’s set this up. Suppose we have a barrier between x = 0 and x = a of essentially
indeterminate shape for now. To the left of the barrier we write our solutions as

ψ(x) = Aeikx +Be−ikx,

where these two terms represent incoming and reflected waves respectively. To the
right of the barrier x > a we have



ψ(x) = Feikx,

which represents the transmitted wave. Show that the wave function inside the poten-
tial barrier by the WKB approximation can be written as

ψ(x) ' C√
|p(x)|

e−1/h̄
∫ x

0
|p(x′)|dx′ ,

where again C is a constant.

17. Essentially we’re looking for a solution which looks like an oscillatory function outside
the well x < 0 and x > a, but a decreasing exponential inside the potential barrier.

Figure 3: A sketch of the behavior of the wave function for tunneling through a broad and/or
high barrier. Image from D. Griffiths.

Show then (argue this - no need for a precise mathematical calculation) that the relative
amplitudes of the transmitted and incident waves are given by essentially the total
decrease of the exponential over the barrier region, i.e.

|F |
|A|
∼ e−1/h̄

∫ a

0
|p(x)|dx,

so that

T '= e−2λ where λ =
1

h̄

∫ a

0
|p(x)|dx.



6 Putting it all Together - Stage 6

Gamow used the WKB approximation (though he didn’t call it that) to finally derive the
decay constant for the alpha decay of Uranium. Taking the nuclear strong force potential as
a simple well coupled with a Coulombic electromagnetic potential, Gamow sketched out the
potential of Uranium as follows.

Figure 4: The potential of Uranium. E is the energy of the alpha particle. r1 is the radius
of the nucleus (and the size of the finite square well potential which models the nuclear
strong force). r2 is the outer turning point for an alpha particle of energy E. Image from D.
Griffiths.

18. Show that the outer turning point r2 is given by (using cgs units)

r2 =
2Ze2

E
,

where Z is the proton number of Uranium, e is the charge of the electron in stat-
Coulombs, and E is the energy of the alpha particle.

19. Next write down the integral for λ and show that it is given by

λ =
1

h̄

∫ r2

r1

√
U(r)− Edr.

20. Show that the integral for λ can be re-written as



λ =

√
2mE

h̄

∫ r2

r1

√
r2

r
− 1dr.

At this point Gamow had trouble performing this integral, and in his autobiography
reminisces:

“I went to see my old friend N. Kotshchin, a Russian mathematician who
was also spending that summer in Gottingen. He didn’t believe me when
I said I could not take the integral, saying he would give a failing grade to
any student who couldn’t do such an elementary task ... Later, when the
paper appeared, he wrote to me that he had become a laughingstock among
his colleagues, who had learned what kind of highbrow mathematical help
he had given me.”

21. Perform the integral using a u-substitution (let r = r2 sin2(u)). Since r1 � r2, use the
small angle approximation for sin(r1/r2).

22. Finally show that

λ = K1
Z√
E
−K2

√
Zr1,

and determine the values of the constantsK1 andK2. The units ofK1 should be MeV1/2

and K2 should have units of fm−1/2. Here’s where our practice using combinations of
mc2, α, and h̄c to easily determine numerical values of expressions will come in handy.

23. Determine r1 by using the typical size of a nucleus, i.e. R = 1.23 fm A1/3. What’s
typically done in the literature is to fudge r1 by about half the width of an alpha
particle, i.e. r1 has the value you calculated here plus half of the size of a helium
nucleus.

24. Now that we have the tunneling probability (and the decay constant), we need to figure
out how to calculate the life-time of the Uranium atom. Here’s where we bring in a
semi-classical approximation. Suppose the alpha particle is moving inside the Uranium
nucleus with some speed vα. It takes the alpha particle roughly 2r1/vα seconds to
traverse the Uranium nucleus interior, after which it collides with a wall and is either
reflected or transmitted. Each encounter has an extremely small chance that it ends



up with the alpha particle tunneling, e−2λ. But, these collisions occur many times per
second and one mole of a substance contains approximately 1023 nuclei, so on average a
few alpha particles will succeed despite the long odds. Show therefore that the half-life
of Uranium is given by

t1/2 =
2 ln(2)r1

vα
e−2λ.

25. To determine the value of vα in our formula above, use the fact that a the depth of a
typical nuclear well is approximately 35 MeV.

26. Finally, calculate the half-life of Uranium-238 given that it emits an alpha particle of
4.2 MeV. Compare this to the measured value of 1.41× 1017 seconds.



7 The Geiger-Nuttall Law - Stage 7

The Geiger-Nuttall Law was an empirical relationship first noticed by Hans Geiger and John
Mitchell Nuttall in 1911 between the decay constant for alpha-emitters like Uranium and
Polonium and the energy of the emitted alpha particles. In particular, they noticed that
half-lives are exponentially dependent on the emitted alpha energies. What this means is
that very small changes in the emitted alpha energy can lead to very large changes in the
half-life. For example, isotopes of Uranium and Thorium that emitted alpha particles with
energies around 4 MeV tended to have half-lives on the order of billions of years, while those
that emitted alpha particles with energies on the order of six MeV tended to have half-lives
on the order of hours.

The modern day Geiger-Nuttall Law can be written as

ln(λdecay) = −a1
Z√
E

+ a2,

where λdecay is the decay constant (λdecay = ln(2)/t1/2), a1 and a2 are constants, Z is the
atomic number, and E is the energy of the emitted alpha particle.

27. Derive the Geiger-Nuttall Law from your work in the previous stages. Find the con-
stants a1 and a2.

28. For the following table (data courtesy Leon van Dommelen), use the Geiger-Nuttall
law that you have derived to compute the half-life of the following alpha-emitters.
The experimental values are included. How accurate are the half-lives and decay
constants that you compute? Can you improve your calculations by changing some of
the assumptions you made about various input parameters like vα, r1, etc.?

Parent Nucleus E (MeV) t1/2 Experimental λdecay (s−1) Experimental
Th232 4.05 1.41× 1010 yr 1.57× 10−18

Th228 5.52 1.9 yr 1.16× 10−8

Rn222 5.59 3.83 days 2.10× 10−6

Po218 6.12 3.05 min 3.78× 10−3

Po216 6.89 0.16 sec 4.33
Po214 7.83 1.5× 10−4 sec 4.23× 103

Po212 8.95 3.0× 10−7 sec 2.31× 106



29. Plot ln(t1/2) vs. 1/
√
E (where t1/2 is measured in years and E in MeV) for the nuclei

above. Notice the beautiful linear relationship.


